

The OMNISECTM Triple Detection method explained

SEC-LS User Training Course

Overview

OMNISEC Training course – Tutorial 2

Why do we calibrate?

Steps in the Triple Detection method

Software Exercise 1

Discussion of results

Questions

How is the data calculated?

Analysis methods

How do we get from a SEC/GPC chromatograms to the results?

Hardware schematic

- Triple Detection: Homopolymers RI, LS, Viscometer
- Tetra Detection: Copolymers RI, UV, LS, Viscometer

GPC System and Detectors

OMNISEC

Premium Performance

RI- UV- RALS/LALS - Viscometer

TDA max

Benchmark

UV - RALS/LALS - RI - Viscometer

Absolute molecular weight, molecular size, intrinsic viscosity, branching, conformation, protein aggregation.

- Redesigned RALS/LALS with significant sensitivity improvements
- New viscometer design
- Improved RI, including change of position in detector module, and excellent sensitivity

SEC-MALS 20

Modular detector

- Multi angle LS 20 angles
- Absolute molecular weight of proteins, synthetic and natural polymers, as well as molecular size expressed as the radius of gyration, Rg.

Summary Triple Detection method

How do we get from a SEC/GPC chromatograms to the results?

Results by sample and peak	
Parameter	Inj. 3 PS244893 108073 0
	Peak 1
RV (mL)	16.97
Mn (g/mol)	107,400
Mw (g/mol)	247,100
Mz (g/mol)	433,700
Mw/Mn	2.3
IVw (dL/g)	0.8184
Rh(η)w (nm)	13.9
Rgw (nm)	16.55

Run narrow and broad standards

Set baseline and limits

Create Calculation method (calibration)

Check Calculation method

Run samples

Set baseline and limits

Obtain results

We will learn now why and how we do these steps.

Why do we calibrate?

1 Calculate detector offset

2 Determine peak symmetry and band broadening

3 Determine calibration constants

1 Calculate detector offset

Detectors peaks offset is due to:

- the serial configuration in the OMNISEC
- the band broadening due to tubing

Software algorithms take into account these effects.

The Triple Detection method © 2018 Malvern Panalytical January 9, 2019

The symmetry describes the shape of the peaks

Band-broadening looks into:

- The effect of running the sample through the chromatography system
- 'stretching' effect the sample is subjected to.

The Triple Detection method © 2018 Malvern Panalytical January 9, 2019

Equations Governing The Detectors

Concentration Detectors

Differential Refractive Index
$$RI_i = \frac{K}{n_0} \frac{dn}{dc} \cdot C_i$$

UV-Vis
$$\begin{cases} A_i = K \cdot \frac{dA}{dc} \cdot C_i \end{cases}$$

Hydrodynamic Size and Intrinsic Viscosity

Four-capillary viscometer
$$\eta_{sp} = \frac{\eta - \eta_0}{\eta_0} = \frac{4\Delta P}{P_i - 2\Delta P} = [\eta] \cdot C$$
 Intrinsic Viscosity

Absolute Molecular Weight Measurement

Static Light Scattering Right Angle (90°) and Low Angle (7°) Light Scattering $K \cdot \frac{dn}{dc} \cdot C = \frac{1}{M_w P(\theta)} + 2A_2C + 3A_3C^2 + \cdots$

Equations governing the detectors

RI output
$$(mV) = K_{RI} \cdot dn/dc \cdot concentration$$

UV output $(mV) = K_{UV} \cdot dA/dc \cdot concentration$

Visc. output $(mV) = K_{Visc.} \cdot IV \cdot concentration$

LS output $(mV) = K_{LS} \cdot M_w \cdot (dn/dc)^2 \cdot concentration$

Unknown

By running the narrow standard of known concentration, dn/dc and M_w the detectors constants are calculated

$$K_{RI} = rac{RI \ output \ (mV)}{dn/dc \cdot concentration}$$
 $K_{UV} = rac{UV \ output \ (mV)}{dA/dc \cdot concentration}$
 $K_{Visc.} = rac{Visc. \ output \ (mV)}{IV \cdot concentration}$
 $K_{LS} = rac{LS \ output \ (mV)}{M_W \cdot (dn/dc)^2 \cdot concentration}$

Triple Detection method

Step-by-step to obtain the M_w of your samples

Calibration with narrow standard (e.g. PS105k in THF)

$$(K_{RI}) = \frac{RI \ output \ (mV)}{dn/dc \cdot concentration}$$

$$K_{LS} = \frac{LS \ output \ (mV)}{M_w \cdot (dn/dc)^2 \cdot concentration}$$

Samples analysis – determine your sample M_w

$$dn/dc = \frac{RI \ output \ (mV)}{K_{RI} \cdot concentration}$$

$$M_{w} = \frac{LS \ output \ (mV)}{K_{LS} \cdot (dn/dc)^{2} \cdot concentration}$$

Steps in the Triple Detection method?

The Triple Detection method © 2018 Malvern Panalytical January 9, 2019

Results by sample and peak	
Parameter	Inj. 1 PS245k Mw 245245
	Peak 1
RV (mL)	17.36
Mn (g/mol)	103,700
Mw (g/mol)	235,500
Mz (g/mol)	394,100
Mw/Mn	2.271
IVw (dL/g)	0.8220
Rh(η)w (nm)	13.72
Rgw (nm)	N/C
М-Н а	0.6992
M-H log K (dL/g)	-3.817

Triple/Tetra Detection GPC/SEC Results

- Absolute molecular weight
- Molecular weight distribution
- Intrinsic viscosity
- Molecular size
- Mark-Houwink coefficients
- % Polymer

Molecular size by triple detection

(Random Coil Polymer)

- Two different measurements of size can be performed using Triple Detection GPC
- Hydrodynamic Radius (R_h)
 - Viscometer and light scattering data
- Radius of Gyration (R_g)
 - Comparison of light scattering detector intensities
 - Flory-Fox estimation

Size measurements - R_h

Hydrodynamic Radius (R_h)

Triple Detection SEC/GPC – IV and M_{w}

R_h is the radius of an equivalent solid sphere that increases the fluid viscosity by the same amount as the macromolecule.

Triple Detection

- Analyze hydrodynamic size from < 1 nm to the exclusion limit of the SEC column (~200 nm)
- No extrapolation or fitting parameters

Dynamic Light Scattering (DLS) – Zetasizer products

R_h is the radius of an equivalent sphere that diffuses with the same speed as the molecule of interest.

Size measurements - R_g

Radius of Gyration (R_q)

Rg is the root-mean-square of the radii from the centre of the mass to the different mass cores within the molecule.

- Direct measurement by changes in scattered light intensities with observation angle
 - RALS/LALS
 - MALS

Limitations:

- Requires good S/N light scattering signal
- Lower size detection limit = 10-15 nm
 - Limit of Anisotropic scattering
- Large structures require non-linear curve fitting

Size measurements - R_g

Radius of Gyration (R_g)

A good estimate of R_q can be made using viscometry and the Flory-Fox equation

$$R_g = \frac{1}{\sqrt{6}} \left(\frac{[\eta] M_w}{\Phi} \right)^{\frac{1}{3}}$$

Equation relates the intrinsic viscosity of a flexible coil molecule in solution in terms of $R_{\rm g}$

- Where Φ = Florys universal constant
- Only OmniSEC v5

Comparison of $R_{\rm h}$ and $R_{\rm g}$ distribution for broad polystyrene 235k

Triple detection technique uses 3 detectors:

- Specific equations govern each detector which allow
 - concentration
 - M_w
 - intrinsic viscosity
 - molecular size
 to be determined across the entire distribution.
- Adding a fourth detector UV allows for <u>compositional</u> <u>analysis</u> in copolymer samples.

Questions?

Summary

Fale comigo!

Gustavo G. Parra, PhD 🕸

Cel: +55 11 94556-5914

E-mail: gustavo.parra@pensabio.com.br

