

Conventional calibration

SEC User Training Course

Overview

OMNISEC Training course – Tutorial 4

Why, when and how!
Hardware schematic

Detector schematic

Steps in conventional calibration Limitations

Software Exercise 3

Discussion of results

Questions

Why, when and how?

- Relatively low Cost
- Easy to use: Pump + Column + Detector
- Conventional used with one Concentration Detector
 - RI (Almost Universal)
 - UV (Second Most Used Proteins & UV Active)
- Publications usually state Mw 'relative to' or indicate the use of multiple standards
 - (i.e. range from ~1000Da 4MDa)
- Column Retention Volume must be known
 - Remember: Separation by Size, not Molecular Weight

DETECTION

Hardware schematic

Conventional calibration system

Conventional calibration

Detection - RI detector schematic

Differential refraction between solvent and solution results in different signals at the photodiodes.

SEC/GPC - Separation

GPC (also known as size-exclusion chromatography, SEC) has long been used as a key tool for measuring molecular weight

- GPC separates
 macromolecules in solution
 according to size in a
 chromatographic column
- After the column, the separated molecules can be analysed by one or more detectors

Conventional calibration outline

Conventional GPC is the most widely used calculation method

- To measure an unknown sample, the column retention volume must be calibrated in some way
- Use polymer standards of known molecular weight
- Flow rate must be controlled carefully
- Accurate concentration not necessary

Remember: the columns separate by size not molecular weight so the calibration is only relative

1st step: run standards and create calibration curve

A series of standards – 10 to 12 standards

- Series of standards with a range of molecular weights
- Set baselines and limits around each standard to perform calibration (Software exercise 3)

Conventional calibration © 2018 Malvern Panalytical January 9, 2019

1st step: run standards and create calibration curve

Narrow standards calibration

- Table of Standards on OmniSec V. 5
 - M_p and Vp: molecular weight and retention volume at the peak
 - Software exercise 3 conventional calibration

2nd step: run unknown sample

Calibration line and calculation

- Total permeation
 - defines the point at which everything that was injected has passed through the column
- Exclusion limit
 - defines the maximum size of a molecule that can be separated by a column

How the M_w is calculated in conventional calibration

Molecular weight moments

Number Average (M_n)

$$\overline{M_n} = \frac{\sum c_i}{\sum^{c_i}/M_i}$$

Weight average (M_w)

$$\overline{M_w} = \frac{\sum c_i M_i}{\sum c_i}$$

Z-average (M_z)

$$\overline{M_Z} = \frac{\sum c_i M_i^2}{\sum c_i M_i}$$

How the M_w is calculated in conventional calibration

Molecular weight moments

 M_n = Total mass of material divided by the total number of molecules.

- Mid point of the distribution in terms of numbers of molecules
- Sensitive to low MW species (more molecules in a given mass)

 $M_{\rm w}$ = Multiplying by the molecules mass.

- Weights each chain length according to its weight fraction.
- Mid point of the distribution in terms of polymer weight
- Biased towards larger molecules in the distribution

 M_z = Multiplying by the molecules mass again.

- Heavily weighed towards the largest molecules in the sample.
- Sedimentation properties

• Number Average (M_n)

$$\overline{M_n} = \frac{\sum c_i}{\sum^{c_i}/M_i}$$

Weight average (M_w)

$$\overline{M_w} = \frac{\sum c_i M_i}{\sum c_i}$$

Z-average (M₂)

$$\overline{M_z} = \frac{\sum c_i M_i^2}{\sum c_i M_i}$$

How the M_w is calculated in conventional calibration

Malvern Panalytical a spectris company

Molecular weight moments

• Number Average (M_n)

$$\overline{M_n} = \frac{\sum c_i}{\sum^{c_i}/M_i}$$

Weight average (M_w)

$$\overline{M_w} = \frac{\sum c_i M_i}{\sum c_i}$$

Z-average (M₂)

$$\overline{M_z} = \frac{\sum c_i M_i^2}{\sum c_i M_i}$$

Dispersity Đ

Classification of molecular weight distribution

Type of material	$\mathbf{D} = M_w/M_n$
Monodisperse	= 1.0
Narrow distribution	< 1.2
Medium distribution	< 2.0
Broad distribution	> 2.0

Dispersity

$$D = \frac{M_W}{M_n}$$

Narrow distribution

Ð < 1.2

Broad distribution

D > 2.0

Advantages of conventional calibration

- Simple setup
 - Only one detector required RI or UV
- Accurately known concentrations not critical for technique
 - Approximate concentrations are good enough
- As a technique excellent precision (repeatability)
 - Dependent on column and pump performance

So... where is the disadvantage with conventional calibration?

Overlay of conventional calibration curves

Sample eluting at ret. vol. of 26 ml:

- 1) PBd calibration curve
 - $Log(M_w) = 3.4$
- 2) PS calibration curve
 - $Log(M_w) = 3.6$

Each polymer has its own size to molecular weight relationship:

$$V_h \approx [\eta] \cdot M$$

Conventional calibration of polymers with the same chemistry

Malvern Panalytical a spectris company

Polystyrene (sample) relative to polystyrene (calibration standards)

Conventional calibration © 2018 Malvern Panalytical January 9, 2019

Conventional calibration of polymers with different chemistry

Polyethylene (sample) relative to polystyrene (calibration standards)

Effect of molecular shape on GPC retention volume

$$\text{Log } M_w \approx 5.3$$

$$\text{Log } M_{\text{w}} \approx 4.5$$

- Size exclusion columns separate by hydrodynamic size and not by M_w
- Therefore, structural differences will affect results:
 - Conformation
 - Branching

Conventional calibration of polymers with different chemistry

Branched polyethylene (sample) relative to polystyrene (calibration standards)

Limitations of conventional calibration

- Every polymer has its own calibration line, which means that M_w values are only accurate for same polymer types
 - Only relative M_w obtained!
 - How close the true and relative M_w values are depends on how close the analyte and standards are in chemical composition and structure
- Any structural change, such as branching, will also affect the accuracy of this value
 - Gives relative M_w even further away from true M_w value!
 - Remember: compare apples with apples or at least a spherical fruit!
- Does not give structural information

Summary

Conventional calibration

- Simple technique to give whole polymer distribution
 - Need to take care with sample/solvent/column compatibility
 - Comparison of samples is easy
- Calibration is main difficulty
 - Data is therefore only relative
- Chromatography conditions need to be carefully controlled
 - Retention volume can be affected by change in conditions
- No structural information
 - Not useful for branched polymers

Software Exercise 3

Conventional Calibration on OmniSEC v5

Objectives

This exercise will instruct you on how to use the OmniSEC v5 software to:

Estimate the molecular weight of two unknown sample using conventional calibration.

Learning Outcomes

Following this exercise, you will be able to use the OmniSEC v5 software to:

- Set baselines and limits.
- Process conventional calibration data using the OmniSEC software.
- Understand the factors affecting Conventional

Go to exercise The Triple Detection Method

- Read all the points
- Follow each steps
- Fill in the tables
- Answer questions